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GENERATIVE MODELS



Flexibility Tractability



THE DIFFUSION PROCESS

[1] Feller, W. On the theory of stochastic processes, with particular reference to applications. In Proceedings of the [First] Berkeley Symposium on 
Mathematical Statistics and Probability. The Regents of the University of California, 1949.
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In the limit of small step size, the reversal of the diffusion process 
has the identical functional form as the forward process [1]



THE DIFFUSION PROCESS



Take one step at a time.



THE REPARAMETRIZATION TRICK

Develop the calculations as an exercise (check here for the solution).

Taking one step at a time is slow. 
We need a faster way to sample to allow quick forward diffusion.

Expand the recursive formulation.

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


THE FORWARD PROCESS

mean variance
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This is used only to simplify notation



THE FORWARD PROCESS

mean variance
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Noise scheduleSignal-to-Noise Ratio

Direct measure of the effect 
of the noise on the input 
image



Now we know how to map from complex distribution to a simple one. How do we go back?



REVERSING THE PROCESS

?

Can we calculate this analytically? We know everything about the forward process.



REVERSING THE PROCESS

We need marginalization over the whole dataset.



REVERSING THE PROCESS

Just learn it!



LEARNING THE REVERSE

Minimize the expected negative log-likelihood



LEARNING THE REVERSE

A little taste of the algebra, use the total probability theorem



LEARNING THE REVERSE

Use the Markov Chain definition and upperbound with Jensen’s inequality

prior forward vs. reverse recon.



LEARNING THE REVERSE

Use the Markov Chain definition and upperbound with Jensen’s inequality

forward vs. reverse



LEARNING THE REVERSE

Use the Markov Chain definition and upperbound with Jensen’s inequality

forward vs. reverse

?



LEARNING THE REVERSE

Use the Markov Chain definition and upperbound with Jensen’s inequality

forward vs. reverse

HIGH VARIANCE



REDUCING THE VARIANCE

Use Markov property and Bayes’ rule



REDUCING THE VARIANCE

Plug the previous equation back in

recon.prior reverse vs. posterior of reverse



THE LOSS FUNCTION

Plug the previous equation back in

recon.prior reverse vs. posterior of reverse



MINIMIZING THE LOSS FUNCTION

Notice the KL divergence in the loss term



HOW TO CALCULATE THE LOSS?

They are both Gaussian distributions



WE CAN NOW SIMPLIFY

Write down the formula for the KL divergence
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Write down the formula for the KL divergence



WE CAN NOW SIMPLIFY

What assumption can we make to simplify this formula ?



WE CAN NOW SIMPLIFY

Just don’t learn it!



NEW LOSS FUNCTION

Assuming we don’t learn the forward variance



THE FORMULATIONS

Change the formulation of the model

image denoiser noise predictor score matching



IMAGE DENOISER



IMAGE DENOISER

input



IMAGE DENOISER
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NOISE PREDICTOR
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SAMPLING

Just sample from the distribution!

Then follow the Markov Chain in reverse



SAMPLING

This is the simplest form of sampling. Very slow!



SCORE-MATCHING

Langevin dynamics for sampling from a known distribution.

We can learn a score function It can be written in terms of noise



SCORE-MATCHING

One can show:



TRAINING ARCHITECTURE

Image Credit: Hoogeboom, Emiel, Jonathan Heek, and Tim Salimans. "simple diffusion: End-to-end diffusion for high resolution images." International Conference on Machine Learning. PMLR, 2023.
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TRAINING ARCHITECTURE
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Image Credit: Hoogeboom, Emiel, Jonathan Heek, and Tim Salimans. "simple diffusion: End-to-end diffusion for high resolution images." International Conference on Machine Learning. PMLR, 2023.
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SAMPLING IN PRACTICE

[1] Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising diffusion implicit models." arXiv preprint arXiv:2010.02502 (2020).

predicted "image"

One can choose different samplers even when given the same trained model

Denoising Diffusion Implicit Models (DDIM) makes 
sampling deterministic

direction pointing towards
single-step denoising



SAMPLING IN PRACTICE

[1] Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising diffusion implicit models." arXiv preprint arXiv:2010.02502 (2020).

predicted "image" direction pointing towards
single-step denoising

is the amount of randomness in the sampling

DDPM sampling Deterministic



SUMMARY

• Diffusion models balance flexibility and tractability.
• They minimize a version of the ELBO from VAEs (they are 

hierarchical VAEs with infinite layers).
• Different formulations can be obtained with only 

practical consequence, no theoretical difference in the loss 
optimized.

• Sampling can be seen separately from training and made 
deterministic.
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SIMPLIFIED NOTATION

[1] Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.



LEARNED NOISE SCHEDULE

[1] Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.

Simple expression for SNRLearned noise schedule

Define notation based on accumulated steps



GENERAL FORMULATIONS

[1] Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.

Loss function with new notation, VLB is the Variational Lower Bound

Discrete-time, i.e.

Generic form

Simplifies to



DISCRETE-TIME

[1] Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.

Discrete-time, i.e.

Generic form

Simplifies to



CONTINUOUS-TIME

[1] Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.

Keep the timesteps continuous and take derivative of SNR w.r.t. time.

Simplifies to (note the analogy to discrete-time):



EQUIVALENCE OF DIFFUSION
MODELS

[1] Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.

Let and use this to change the variables in the continuous-time loss:

The functions for the noise (aka the noise schedule) has no effect on the loss function itself, 
which is only dependent on the SNR at the start and end of the schedule.

Noise schedule still has an effect during training. This is because this perfect 
situation does not happen and the timesteps effectively sampled will affect how the model 
is trained.



PROGRESSIVE DISTILLATION

[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." arXiv preprint arXiv:2202.00512 (2022).
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CONSISTENCY MODELS

[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." arXiv preprint arXiv:2202.00512 (2022).

Multi-step sampling directly in the design of the model to trade-off speed and quality.



CONSISTENCY MODELS
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FREQUENCY INTERPRETATION
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FREQUENCY INTERPRETATION
1. Find the 2D Fourier Transform
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