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CT vs CBCT

Single slice per rotation.

Low noise.

Calibrated HU.

Whole scan per rotation.

High noise.

Un-Calibrated HU.



TRADITIONAL 
TECHNIQUES



Basis of Computed Tomography

Fessler, J. A. Fundamentals of CT Reconstruction in 2D and 3D. in Comprehensive Biomedical 
Physics 263–295 (Elsevier, 2014). doi:10.1016/B978-0-444-53632-7.00212-4.

Projection Back-Projection

https://doi.org/10.1016/B978-0-444-53632-7.00212-4


Fessler, J. A. Fundamentals of CT Reconstruction in 2D and 3D. in Comprehensive Biomedical 
Physics 263–295 (Elsevier, 2014). doi:10.1016/B978-0-444-53632-7.00212-4.

Filtered Back-Projection

https://doi.org/10.1016/B978-0-444-53632-7.00212-4


Image Reconstruction as Inverse Problem

Image Data



Solving the Inverse Problem

Straightforward approach to inversion

Find reconstruction that minimizes the 
negative log-likelihood.

Overfit the measurements.

Noise will affect reconstruction.



Regularization

Add prior information using 
regularization to reduce effect of noise 

on the reconstruction.

Regularization functional.

Regularization parameter.

Where:



Iterative Methods for Reconstruction

Total Variation regularization

Spatial gradient as regularization.

Results in smoother reconstructions.



Iterative Methods for Reconstruction



Iterative Methods for Reconstruction

Termination condition is an 
open problem.



DEEP 
LEARNING 
BASED



Learned Reconstruction

Find pseudo-inverse that given the 
measurements, obtains the clean 

reconstruction.

Learned refers to finding the best parameters 
given some training data.

Image Data

Zhu, B., Liu, J., Cauley, S. et al. Image reconstruction by domain-transform manifold 
learning. Nature 555, 487–492 (2018). https://doi.org/10.1038/nature25988

https://doi.org/10.1038/nature25988
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Learned Reconstruction

Zhu, B., Liu, J., Cauley, S. et al. Image reconstruction by domain-transform manifold 
learning. Nature 555, 487–492 (2018). https://doi.org/10.1038/nature25988

Finding the pseudo-inverse is HARD
• Reconstruction must be performed in a single step.
• All projection data must be processed at once: 1000s of 

projections potentially. Infeasible for modern hardware.

https://doi.org/10.1038/nature25988


Learned Iterative Reconstruction

Adler, J. & Öktem, O. Learned Primal-dual Reconstruction. IEEE Trans. Med. Imaging 37, 
1322–1332 (2018).

Dual space = projection space

Primal space = image space



Learned Iterative Reconstruction

Generalization of the regularized objective:

Adler, J. & Öktem, O. Learned Primal-dual Reconstruction. IEEE Trans. Med. Imaging 37, 
1322–1332 (2018).

Allows to split the optimization into a 
primal step and dual step.



Learned Iterative Reconstruction

Why use primal-dual?
• Gradient descent on the available 

projections is noisy.
• Regularization is not enough.

We can solve this problem by unrolling the 
iterative steps and learning each step.

Adler, J. & Öktem, O. Learned Primal-dual Reconstruction. IEEE Trans. Med. Imaging 37, 
1322–1332 (2018).



Learned Primal-Dual Model
Inspired by Primal Dual Hybrid Gradient Method.

Adler, J. & Öktem, O. Learned Primal-dual Reconstruction. IEEE Trans. Med. Imaging 37, 
1322–1332 (2018).



Anatomy of a Block

Adler, J. & Öktem, O. Learned Primal-dual Reconstruction. IEEE Trans. Med. Imaging 37, 
1322–1332 (2018).

Small convolutional stack

Small convolutional stack

Projection

Back-Projection



1. CBCT projection and back-projection operators 
require all projections and the entire volume in 
GPU for fast inference.

2. Several iterations of CNN blocks require storing 
gradient information for back-propagation (i.e. 
training).

3. Using external libraries for computing projections 
is slow.

4. PyTorch does not allow simple compilation of 
complex combination of operations.

Application: LIRE
Scaling learned primal dual to CBCT

When training large scale models, considerations on memory 
usage and processing speed are paramount to making it work.



1. Mandatory requirement that can only be relaxed 
if we sacrifice a lot of speed.

2. Use invertible blocks for allowing computation of 
the gradient from the output to the input. Use 
tiling mechanism to not store whole feature 
maps.

3. Write custom CUDA code as a PyTorch 
extension.

4. Write the whole model as a CUDA kernel. 
Alternative are possible for CNN-based models.

Application: LIRE
Scaling learned primal dual to CBCT

When training large scale models, considerations on memory 
usage and processing speed are paramount to making it work.



LIRE Results: Small Field of View

Ground Truth LIREUNetIterative: latest
commercial CBCT



Reconstruction at 1mm resolution with LIRE

GT LIRE



LIRE Results: Comparison with other methods



Neural fields

Examples of fields

Xie, Yiheng, et al. "Neural fields in visual computing and beyond." Computer Graphics Forum. Vol. 41. 
No. 2. 2022.



Neural fields
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Neural fields
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Optimize the network using SGD.
One network per sample



Making Neural Fields Learn from Data

Condition the network on the new measurements.
Train a backbone on all the data available.



Neural Modulation Fields

Papa, Samuele, et al. "Neural Modulation Fields for Conditional Cone Beam Neural 
Tomography." arXiv preprint arXiv:2307.08351 (2023).



Results



Results



Summary

Traditional methods cannot learn from data. They leverage 
the knowledge of the forward operator to optimize a 

regularized objective.

Learned approach for direct reconstruction is not feasible.

Iterative primal-dual method learns to incrementally 
reconstruct the image while also optimizing internal objective 

in the projection domain.



Outlook and areas of improvements

Learning-based methods should be physics inspired.

Computational resources are limited in this domain. Great 
area for benchmarking new methods.

No real ground-truth data is available unless great 
simulators are developed.

Add temporal domain for motion compensation or 
reconstruction.


