

JAX. AN INTRODUCTION TO DEEP LEARNING PROGRAMMING PRINCIPLES

SAMUELE PAPA

WHO AM I?

PhD student @ UvA & NKI

- Real-world applications of Deep Learning
- Scientific modeling
- Medical imaging

Contact: <u>s.papa@uva.nl</u>

INSPIRATION AND SOURCES

- <u>Phillip Lippe</u>: <u>notebooks</u>, <u>presentations</u>, and more.
- Official JAX <u>documentation</u>.
- <u>Other sources</u>.

KEY ASPECTS OF MODERN COMPUTING

KEY ASPECTS OF MODERN COMPUTING

Parallelization

Compute

Memory

HOW CAN WE IMPROVE?

Manual optimization

Use algorithms and data structures.

e.g. async loading and preprocessing of data on $\ensuremath{\mathsf{CPU}}$

e.g. hash maps for spatial embeddings

Leverage compilers

HOW CAN COMPILERS HELP?

RAM

Disk

Т4

 \rightarrow 1.02 ms ± 324 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

HOW CAN COMPILERS HELP?

```
[2] 1 selu_jit = jax.jit(selu)
2
3 # Pre-compile the function before timing...
4 selu_jit(x).block_until_ready()
5
6 %timeit selu_jit(x).block_until_ready()
```

 \rightarrow 264 µs ± 64.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

RAM

Disk

Τ4

WHY?

Each operation (approximately) calls a new kernel

```
[3]
     1 def selu(x, alpha=1.67, lambda_=1.05):
           original_x = x
     2
           x = jnp.exp(x)
     3
          x = alpha * x
     4
     5
          x = x - alpha
     6
           x = jnp.where(original_x > 0, original_x, x)
     7
           x = lambda_ * x
     8
           return x
     9
    10 x = jnp.arange(1000000)
    11 %timeit selu(x).block_until_ready()
```

 \rightarrow 922 µs ± 114 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

JUST-IN-TIME COMPILATION

JIT. Compile code during execution.

Simply use jax.jit()

Compiles the function by converting to intermediate jaxprs language.

Tracks usage and optimizes also memory.

FUNCTIONAL PROGRAMMING

PURE FUNCTIONS

Example of **classic object-oriented** design pattern. Often encountered when using classes.

```
[4] 1 counter = 0
2 def increase_counter_by(x):
3    return counter + x
4
5 print(increase_counter_by(12))
```

→ 12

```
[5] 1 counter = 10
2 print(increase_counter_by(12))
```

PURE FUNCTIONS

Now we compile it.

[6] 1 jit_increase_counter_by = jax.jit(increase_counter_by)
2 print(jit_increase_counter_by(10))

→ 20

[7] 1 counter = 0
2 print(jit_increase_counter_by(12))

→ 22

PURE FUNCTIONS

A pure function is a function that, given the **same input**, will always return the **same output** and does not have any observable **side effect**.

A side effect is e.g. something that is performed in-place, affects something outside the scope of the function.

WHY PURE FUNCTIONS?

- 1. Makes your code more maintainable.
- 2. Makes compilation possible and simple.
- 3. Makes parallelization easier.
- 4. You can replace the whole function with its outputs when necessary.
- 5. Functional composition makes math-to-code easier.

HOW TO WRITE JAX

JAX IS NUMPY

array concept, just as in numpy.

[9] 1 import jax.numpy as jnp 2 a = jnp.zeros((2, 5), dtype=jnp.float32) 3 print(a)

 $\xrightarrow{\rightarrow} [[0. \ 0. \ 0. \ 0. \ 0.] \\ [0. \ 0. \ 0. \ 0. \ 0.]]$

All numpy functions are available. API matches.

JAX IS NUMPY

Array objects are always placed directly on the available accelerators

When we retrieve from device, it becomes a numpy array.

- [13] 1 b.devices()

- [14] 1 b_cpu = jax.device_get(b)
 2 print(b_cpu.__class__)

PARALLELIZATION

JAX HAS AUTOMATIC VECTORIZATION

Simple parallelization of operations
using jax.vmap()

An example of simple element-wise operation.

```
[13] 1 def single_linear(x, w, b):
2     return (x[:,None] * w).sum(axis=0) + b
3
4 # Example inputs
5 x_in = jnp.ones((4,))
6 w_in = jnp.ones((4, 3))
7 b_in = jnp.ones((4, 3))
8
9 single_linear(x_in, w_in, b_in)
```

→ Array([5., 5., 5.], dtype=float32)

JAX HAS AUTOMATIC VECTORIZATION

1 batched_linear = jax.vmap([14] Input shapes single_linear, 2 3 in_axes=(0,None,None), [5, 4] - batched 4 out_axes=0 [4,3] - shared 5) 6 [4] - shared 7 # Example batched inputs 8 batched_x_in = jnp.ones((5, 4,)) 9 10 batched_linear(batched_x_in, w_in, b_in) Output shapes → Array([[5., 5., 5.], [4,3] - batched [5., 5., 5.], [5., 5., 5.], [5., 5., 5.], [5., 5., 5.]], dtype=float32)

PARALLELIZATION

FUNCTIONAL COMPUTATION OF GRADIENTS

The jax.grad() function returns the function that evaluates the derivative at any given input

```
[15] 1 def rms_error(x, y):
2    return jnp.sqrt(jnp.mean((x-y)**2))
3
4 x_in = jnp.array([1.2,3.2,4], dtype=jnp.float32)
5 y_target = jnp.array([0,5.,10.], dtype=jnp.float32)
6
7 grad = jax.grad(rms_error)
8 grad(x_in, y_target)
```

→ Array([0.1086251 , -0.16293764, -0.54312545], dtype=float32)

GRADIENT DESCENT

Very intuitive implementation from math to code.

	[22]	<pre>1 lambda_ = 0.05 2 x_new = x_in 3 for i in range(200): 4</pre>
ation code.	ŢŢ.	3.6657236 3.4990568 3.3323894 3.1657221 2.9990551 2.8323882 2.665721 2.4990537 2.3323865 2.1657195 1.9990524 1.8323854 1.6657186 1.4990516 1.3323847 1.1657186 0.9990542 0.8323898 0.6657253 0.49906078

[23] 1 x_new

Array([0.11374928, 4.829371 , 9.431246], dtype=float32)

GRADIENT DESCENT

Improving the performance a bit with some heuristic annealing

- [18] $1 \text{ lambda}_{-} = 0.1$ 2 annealing = 0.753 steps = 50 $4 x_new = x_in$ 5 for i in range(1000): x_new = x_new - lambda_ * grad(x_new, y_target) 6 if (i + 1) % steps == 0: 7 lambda_ *= annealing 8 print(rms_error(x_new, y_target)) 9 $\overline{\rightarrow}$ 2.0157194 0.7657221 0.015718736 0.012406095 0.008687421 0.0071328944 0.0047321706 0.0041667605 0.002507655 0.0024983105 0.0012557198
 - 0.002307635 0.0024983105 0.0012557198 0.0012558495 0.0008558435 0.0007279681 0.00046012658 0.00043075677 0.00023763097 0.00023762452 0.00013843694 0.00013850731

[19] 1 x_new

PSEUDO-RANDOM NUMBER GENERATION

THE GOALS OF PSEUDO-RANDOM NUMBER GENERATOR

Reproducible

Parallelizable

Vectorizable

HOW IT IS USUALLY DONE

Set a global seed.

How does it behave on multiple devices?

What happens with intermediate steps of random sampling?

[21] 1 import numpy as np 2 import torch 3 np.random.seed(0) 4 torch.manual_seed(0)

<torch._C.Generator at 0x7f32c06c33d0>

WHEN DOES THE GLOBAL SEED FAIL?

Order of operations is not guaranteed.

Especially in parallel computations.

```
[22] 1 import numpy as np
2
3 np.random.seed(0)
4
5 def bar(): return np.random.uniform()
6 def baz(): return np.random.uniform()
7
8 def foo(): return bar() + 2 * baz()
9
10 print(foo())
```

```
→ 1.9791922366721637
```

WHEN DOES THE GLOBAL SEED FAIL?

```
[27]
                                                           1 import numpy as np
[26]
      1 import numpy as np
                                                           2
       2
                                                           3 np.random.seed(0)
      3 np.random.seed(0)
      4
                                                            Δ
                                                           5 def bar(): return np.random.uniform()
      5 def bar(): return np.random.normal()
                                                           6 def baz(): return np.random.normal()
      6 def baz(): return np.random.uniform()
                                                           8 def foo(): return bar() + baz()
      8 def foo(): return bar() + baz()
      9
                                                           9
     10 print(foo())
                                                          10 print(foo())
                                                         1.290405244736486
    2.366815722039308
\rightarrow \bullet
                                                     \rightarrow \bullet
```

USE PRNG KEYS

Key: used by pseudo-random number generator to actually create randomness.

Given a key, the output of the random operation is always the same.

Same is possible in numpy and torch using generators.

- [28] 1 from jax import random
 2
 3 key = random.key(42)
 4 print(key)
- Array((), dtype=key<fry>) overlaying:
 [0 42]
 - [29] 1 print(random.uniform(key))
 2 print(random.uniform(key))

→ 0.42672753 0.42672753

DID WE SOLVE THE PROBLEM?

```
[31] 1 key = random.key(42)
2
3 def bar(key): return random.uniform(key)
4 def baz(key): return random.normal(key)
5
6 def foo(key): return bar(key) + baz(key)
7
8 print(foo(key))
```

```
→ 0.24201576
```

```
[32] 1 key = random.key(42)
2
3 def bar(key): return random.normal(key)
4 def baz(key): return random.uniform(key)
5
6 def foo(key): return bar(key) + baz(key)
7
8 print(foo(key))
```

```
→ 0.24201576
```

SUMMARY

- 1. **Compilation** = free code optimization.
- 2. **Functional** programming is powerful.
- 3. **Vectorization** to explicitly batch operations.
- 4. JAX at the core is numpy with **autograd**.
- 5. Reliable **pseudo-RNG** with keys.

THANK YOU!

Samuele Papa. Open to chat and collaborate! Looking for internship opportunities.

samuele.papa@gmail.com samuelepapa.github.io