
JAX.
AN INTRODUCTION
TO DEEP LEARNING
PROGRAMMING
PRINCIPLES

SAMUELE PAPA

WHO AM I?

2

PhD student @ UvA & NKI

— Real-world applications of Deep Learning

— Scientific modeling

— Medical imaging

Contact: s.papa@uva.nl

mailto:s.papa@uva.nl

INSPIRATION AND SOURCES

— Phillip Lippe: notebooks, presentations, and more.

— Official JAX documentation.

— Other sources.

https://github.com/phlippe
https://uvadlc-notebooks.readthedocs.io/en/latest/index.html
https://phlippe.github.io/media/GDE_Talk_Intro_to_JAX_Flax_2022_12_06.pdf
https://jax.readthedocs.io/en/latest/quickstart.html
https://www.kaggle.com/code/aakashnain/tf-jax-tutorials-part-5-pure-functions-in-jax

KEY ASPECTS OF
MODERN
COMPUTING

4

KEY ASPECTS OF MODERN COMPUTING

Parallelization Compute Memory

HOW CAN WE IMPROVE?

Manual optimization
Use algorithms and data structures.

e.g. async loading and preprocessing of data on CPU

e.g. hash maps for spatial embeddings

Leverage compilers

HOW CAN COMPILERS HELP?

HOW CAN COMPILERS HELP?

WHY?

Each operation (approximately) calls a new kernel

JUST-IN-TIME COMPILATION

JIT. Compile code during execution.

Simply use jax.jit()

Compiles the function by converting to intermediate jaxprs language.

Tracks usage and optimizes also memory.

FUNCTIONAL
PROGRAMMING

11

PURE FUNCTIONS
Example of classic object-oriented design pattern.

Often encountered when using classes.

PURE FUNCTIONS
Now we compile it.

PURE FUNCTIONS

A pure function is a function that, given the same input, will always
return the same output and does not have any observable side effect.

A side effect is e.g. something that is performed in-place, affects
something outside the scope of the function.

WHY PURE FUNCTIONS?

1. Makes your code more maintainable.

2. Makes compilation possible and simple.

3. Makes parallelization easier.

4. You can replace the whole function with its outputs when necessary.

5. Functional composition makes math-to-code easier.

HOW TO WRITE JAX

16

JAX IS NUMPY

array concept, just as in numpy.

All numpy functions are available.

API matches.

JAX IS NUMPY

Array objects are always placed directly
on the available accelerators

When we retrieve from device, it becomes a
numpy array.

PARALLELIZATION

19

JAX HAS AUTOMATIC VECTORIZATION

Simple parallelization of operations
using jax.vmap()

An example of simple element-wise operation.

JAX HAS AUTOMATIC VECTORIZATION

Input shapes

[5,4] - batched

[4,3] - shared

[4] - shared

Output shapes

[4,3] - batched

PARALLELIZATION

22

FUNCTIONAL COMPUTATION OF GRADIENTS
The jax.grad() function returns the function that evaluates the derivative at any given input

GRADIENT DESCENT

Very intuitive implementation
from math to code.

GRADIENT DESCENT

Improving the performance a bit
with some heuristic annealing

PSEUDO-RANDOM
NUMBER
GENERATION

26

THE GOALS OF PSEUDO-RANDOM NUMBER GENERATOR

Reproducible

Parallelizable

Vectorizable

HOW IT IS USUALLY DONE

Set a global seed.

How does it behave on multiple devices?

What happens with intermediate steps of
random sampling?

WHEN DOES THE GLOBAL SEED FAIL?

Order of operations is not
guaranteed.

Especially in parallel computations.

WHEN DOES THE GLOBAL SEED FAIL?

Same operation, different results.

USE PRNG KEYS

Key: used by pseudo-random number
generator to actually create randomness.

Given a key, the output of the random
operation is always the same.

Same is possible in numpy and torch using generators.

DID WE SOLVE THE PROBLEM?

SUMMARY

1. Compilation = free code optimization.

2. Functional programming is powerful.

3. Vectorization to explicitly batch operations.

4. JAX at the core is numpy with autograd.

5. Reliable pseudo-RNG with keys.

THANK YOU!

Samuele Papa.
Open to chat and collaborate!
Looking for internship opportunities.

samuele.papa@gmail.com
samuelepapa.github.io

mailto:samuele.papa@gmail.com
https://samuelepapa.github.io/

